Halo K-Giant Stars from LAMOST: Kinematics and Galactic Mass Estimate

Sarah A. Bird Shanghai Astronomical Observatory In collaboration with Juntai Shen, Chao Liu, Xiang Xiang Xue, Chris Flynn

Sunday, February 19, 2017

Halo		Mass	ANY RIGHT
			(Star (Star (Star (Star (Star (Star (Star (Star (S
Contents			States of

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation

Halo			Mass	AN PRIMA
	4111			
I he I\	/IIKV WAV (Bland-Hawtho	rn & Gerhard 2016. Helmi 2008.	Figure: NASA/JPL-Caltech/ES	O/R. Hurt)

• Mass:

- Dark matter mass within ~ 250 kpc $\sim 10^{12} M_{\odot}$
- Baryonic mass $\sim 10^{11} M_{\odot}$
- Visible mass:
 - Disk + bulge = 99%
 - Stellar halo = 1%
 - Stellar halo = $\sim 1\%$ globular clusters + 99% stars
- Halo stars: old, metal-poor, large random motions

Milky Way stellar halo

- Motivation to study the stellar halo:
 - Galaxy formation
 - Properties of the old stellar populations
 - Remnants of past mergers
 - Test cosmological models
 - Probe the dark matter halo

- What mechanisms form the halo and at what time? Early on during initial formation of the galaxy? Later on by accreted galaxies?
- How do the kinematics and chemistry evolve with time?
- How do halos differ between different galaxies?
- What causes bumps and wiggles in the Milky Way's stellar halo kinematics?
- How many accreted objects have contributed to the build up our Galaxy?
- What is the mass of the Galaxy?

Halo	Kinematics	Mass	6 * 2.1 # 1
			/% 🔿 👘

Milky Way stellar halo properties^[1,2]

Typical values for	inner halo	outer halo
Galactocentric radius ^[4]	< 20 kpc	> 20 kpc
$age^{[1]}$	$> 10 { m Gyr}$	$> 10 { m Gyr}$
peak metallicity $[{ m Fe}/{ m H}]^{[3,4]}$	-1.6 dex	-2.2 dex
metallicity range $[{ m Fe}/{ m H}]^{[3]}$	$-4.0-0 \ dex$	-4.0 - 0 dex
spatial distribution ^[4]	flattened	spherical
n, density profile $^{[4-7]} ho \propto r^{-n}$	2-4	2-4
kinematics ^[8,9,10,11]	radial + wiggle	isotropic to radial
Galactic radial velocity dispersion ^[11,12,13]	120 km/s	declines to 50 km/s

B-V

Halo		Mass	AN RALET
TIAIO	it giants		

Stellar tracers of the halo

Tracer Star	Number	Distance Range [kpc]	Survey	Reference
K giant	6900	3 - 200	LAMOST	Bird+17
K giant	6036	5 - 125	SDSS/SEGUE	Xue+14
$BHB^{[1]}$	4664	5 - 60	SDSS/SEGUE	Kafle+12
BHB	1933	16 - 48	SDSS/SEGUE	Deason+12
BHB	4985	5 - 80	SDSS/SEGUE	Xue+11
BHB	3549	10 - 50	SDSS/SEGUE	$Deason{+}11$
BHB	666	20 - 100	2QZ Redshift	De Propris+10
			Survey	
A-type	910	15 - 75	Hypervelocity	Brown+10
			Star Survey	
BHB	2558	5 - 60	SDSS/SEGUE	Xue+08
BHB	1170	5 - 96	SDSS/SEGUE	Sirko+04
BHB	700	< 45	mixture of surveys	Sommer-Larsen+97

^[1] blue horizontal branch

Halo

K giants

Kinematics

Mas

Collecting more Milky Way halo stars!

LAMOST Photo Gallery

	K giants	Mass	019 2.1 4 T
Contonto			Real Carlos
Contents			

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation

Selection criteria:

- LAMOST Data Release 3
- $\bullet~4000 < {\rm T_{eff}/K} < 5600$
- surface gravity $\log g < 4 \text{ dex}$
- $\bullet~$ exclusion of red clump stars based on $Mg_b~$ lines $_{\text{Liu}+14}$
- distance using method of Xue+14
- $|\mathrm{Z}| > 5 \text{ kpc}$
- $[{\rm Fe}/{\rm H}] < -1.3$ dex
- total: over 6900 K-giant spectra out to $R_{\rm gc} = 200 \; \rm kpc$

Number histogram of LAMOST halo K giants

	K giants	Kinematics	Mass	6 1 9 2.1 4 T
Contonto				Consist Called
Contents				

1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
 - 4 Results: Galactic Mass Estimation

Velocity histograms with LAMOST

Double Gaussian fit:

- broad Gaussian: smooth distribution of halo stars
- narrow Gaussian: stellar stream
- remove streams from further analysis

Line-of-sight velocity dispersion: observations

- Comparison between different studies:
 - consistent results
 - flattened profile

		Mass	4192147
Contents			Subbraical Carlot

1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation

• Jeans equation describes the motion of a collection of tracer particles in a galactic potential $\frac{d\Phi}{dr}$

$$\frac{\mathrm{d}}{\mathrm{d}r}(\nu\sigma_r^2) + \frac{2\beta}{r}\nu\sigma_r^2 = \nu\frac{\mathrm{d}\Phi}{\mathrm{d}r}$$

- $\bullet~\sigma_{\rm r}$ radial and $\sigma_{\rm t}$ tangential velocity dispersion profile
- anisotropy parameter $\beta = 1 \frac{\sigma_{\theta}^2 + \sigma_{\phi}^2}{2\sigma_z^2} = 1 \frac{\sigma_t^2}{\sigma_z^2}$
- ν density profile of particles
- Virial theorem describes the system as a whole, relating together the average over time of the kinetic and potential energies. For example the system here is a galaxy.

$$\langle \mathbf{v}^2 \rangle = \left\langle \frac{GM}{r} \right\rangle$$

$$M_{\rm out} \approx \frac{r_{\rm out}^{0.5}(0.5 + \gamma - 2\beta)}{GN} \sum_{i=1}^{N} r_i^{0.5} v_{r,i}^2$$

- Estimates mass $M_{\rm out}$ out to the distance $r_{\rm out}$ of the furthest data point
- Observations of N number of halo tracers
 - radial velocity v_r
 - galactocentric distance r
- Assumptions
 - simplest case dynamics: spherical system traced by a non-rotating relaxed population in equilibrium
 - Navarro-Frenk-White dark halo density profile
 - tracer number density $\propto r^{-\gamma}$ with $\gamma \approx$ 4 $_{\rm Xu+17}$
 - velocity isotropy ($\beta = 0$)

Results for LAMOST + SEGUE halo K-giant stars with Galactocentric radius of 16 - 85 kpc:

- total number of tracers N = 5734 K giants
- $\bullet\,$ Milky Way mass out to 85 kpc: $0.7\pm0.1\times10^{12}{\rm M}_\odot$

Extrapolate mass out to the virial radius $r_{\rm vir}$

- Subtract bulge and disk mass: $5.9\times 10^{10} M_{\odot}$ Binney & Tremaine 08, Bovy & Rix 13
- Fit the mass profile from LAMOST with Navarro-Frenk-White dark halo density profile
- Best fit parameters: $r_{\rm vir} = 208$ kpc and concentration c = 26
- \Rightarrow result: $M(r_{\rm vir}) = 0.9^{+0.6}_{-0.3} \times 10^{12} {
 m M}_{\odot}$
- Comparable mass to Huang+16

			Mass	A SELAT
--	--	--	------	---------

Results: Galactic mass compared Figure: adapted from Wang15

		Mass	AN SOLUTION
			(see a see a s
Contonto			and the second second
Contents			

1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation

		Mass	1 9 9.1 4 A
Thankel			Contract Carlos
I HallKS!			

Summary and Future Work:

- Flattened velocity dispersion profile
- Galactic mass estimate with LAMOST+SEGUE
- Run simulations: check $v_{\rm los}$ vs $v_{\rm r}$
- Collect more halo stars with LAMOST
- email: sarahbird@shao.ac.cn

	Mass	A 98.147

Velocity histograms with LAMOST

- Antonical C

- Evans, An, Deason 2011
- Mass estimator uses halo tracers
- Assumes a Navarro-Frenk-White dark halo density profile

$$ho(r) \propto rac{1}{r(a+r)^2}$$

• scale radius a and is related to the concentration parameter $c = r_{\rm vir}/a$

٢

- Extrapolate mass out to virial radius
- Navarro-Frenk-White Halo for mass within radius r
 - $M(r) = 4\pi \rho_0 a^3 \ln(1 + r/a) rac{r/a}{1 + r/a}$
- ρ_0 is a density parameter, *a* is scaling radius
- $a = r_{\rm vir}/c$
- c is concentration

٩

	Mass	61.9 2.1 4 T

Galactic kinematics and velocity dispersion

$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N - 1}}$$

Figure : disk and halo

Line-of-sight velocity dispersion: observations

